Search results for "Photosystem II"

showing 10 items of 69 documents

Structural and Functional Analysis of the Antiparallel Strands in the Lumenal Loop of the Major Light-harvesting Chlorophyll a/b Complex of Photosyst…

2007

The light-harvesting chlorophyll a/b-binding protein of photosystem II (LHCIIb) fulfills multiple functions, such as light harvesting and energy dissipation under different illuminations. The crystal structure of LHCIIb at the near atomic resolution reveals an antiparallel strands structure in the lumenal loop between the transmembrane helices B/C. To study the structural and functional significances of this structure, three amino acids (Val-119, His-120, and Ser-123) in this region have been exchanged to Phe, Leu, and Gly, respectively, and the influence of the mutagenesis on the structure and function of LHCIIb has been investigated. The results are as follows. 1) Circular dichroism spect…

ChlorophyllModels MolecularCircular dichroismPhotosystem IIRecombinant Fusion ProteinsLight-Harvesting Protein ComplexesAntiparallel (biochemistry)BiochemistryFluorescencechemistry.chemical_compoundNeoxanthinSite-directed mutagenesisMolecular BiologyPlant ProteinsPhotobleachingChemistryChlorophyll ACircular DichroismPeasPhotosystem II Protein ComplexCell BiologyFluorescenceTransmembrane domainB vitaminsCrystallographyMutationMutagenesis Site-DirectedProtein BindingJournal of Biological Chemistry
researchProduct

Insertion of light-harvesting chlorophyll a/b protein into the thylakoid

2000

The major light-harvesting chlorophyll a/b-binding protein (Lhcb1,2) of photosystem II is inserted into the thylakoid via the signal recognition particle dependent pathway. However, the mechanism by which the protein enters the membrane is at this time unknown. In order to define some topographical restrictions for this process, we constructed several recombinant derivatives of Lhcb1 carrying hexahistidine tags at either protein terminus or in the stromal loop domain. Additionally, green fluorescent protein (GFP) was fused to either terminus. None of the modifications significantly impair the pigment-binding properties of the protein in the in vitro reconstitution of LHCII. With the excepti…

LightPhotosystem IIRecombinant Fusion ProteinsGreen Fluorescent ProteinsPhotosynthetic Reaction Center Complex ProteinsMutantLight-Harvesting Protein ComplexesBiologyThylakoidsBiochemistryInsert (molecular biology)Green fluorescent proteinLight-harvesting complexchemistry.chemical_compoundNickelHistidinePlant ProteinsSignal recognition particlePeasPhotosystem II Protein ComplexBiological TransportIntracellular MembranesPigments BiologicalMolecular WeightLuminescent ProteinschemistryBiochemistryChlorophyllThylakoidMutationBiophysicsCarrier ProteinsEuropean Journal of Biochemistry
researchProduct

The N-terminal domain of the light-harvesting chlorophyll a/b-binding protein complex (LHCII) is essential for its acclimative proteolysis.

2000

AbstractVariations in the amount of the light-harvesting chlorophyll a/b-binding protein complex (LHCII) is essential for regulation of the uptake of light into photosystem II. An endogenous proteolytic system was found to be involved in the degradation of LHCII in response to elevated light intensities and the proteolysis was shown to be under tight regulation [Yang, D.-H. et al. (1998) Plant Physiol. 118, 827–834]. In this study, the substrate specificity and recognition site towards the protease were examined using reconstituted wild-type and mutant recombinant LHCII. The results show that the LHCII apoprotein and the monomeric form of the holoprotein are targeted for proteolysis while t…

Acclimative proteaseChlorophyll aN-terminal domainPhotosystem IImedicine.medical_treatmentProteolysisMutantMolecular Sequence DataPhotosynthetic Reaction Center Complex ProteinsBiophysicsLight-Harvesting Protein ComplexesRecognition siteEndogenyLight-harvesting complex IIBiochemistrylaw.inventionchemistry.chemical_compoundStructural BiologylawSpinacia oleraceaGeneticsmedicineAmino Acid SequenceMolecular BiologyProteasemedicine.diagnostic_testSequence Homology Amino AcidChemistryBinding proteinHydrolysisPhotosystem II Protein ComplexCell BiologyBiochemistryRecombinant light-harvesting complex IIProteolysisRecombinant DNAFEBS letters
researchProduct

Studies on the mechanism of photosystem II photoinhibition II. The involvement of toxic oxygen species.

1990

In a previous paper it was shown that photoinhibition of reaction centre II of spinach thylakoids was predominantly caused by the degradation of D1-protein. An initial inactivation step at the QB-site was distinguished from its breakdown. The present paper deals with the question as to whether this loss of QB-function is caused by oxygen radical attack. For this purpose the photoinhibition of thylakoids was induced at 20°C in the presence of either superoxide dismutase and catalase or the antioxidants glutathione and ascorbic acid. This resulted in comparable though not total protection of D1-protein, photochemistry and fluorescence from photoinhibition. The combined action of both the enzy…

PhotoinhibitionbiologyPhotosystem IIChemistryRadicalCell BiologyPlant ScienceGeneral MedicineAscorbic acidPhotosynthesisPhotochemistryBiochemistrySuperoxide dismutaseCatalaseThylakoidbiology.proteinPhotosynthesis research
researchProduct

Development of the photosynthetic apparatus during light-dependent greening of a mutant of Chlorella fusca.

1977

The formation of chlorophyll, cytochrome f, P-700, ribulose bisphosphate carboxylase as well as photosynthesis and Hill reaction activities were tested during the light-dependent greening process of the Chlorella fusca mutant G 10. Neither chlorophyll nor protochlorophyllide was detected in the darkgrown cells. When transferred to light the mutant cells developed chlorophyll and established its photosynthetic capacity after a short lag phase. In the in vivo absorption spectra a spectral shift of the red absorption peak position from 674 to 680 nm was indicated during the first 3 h of greening. Cytochrome f was already present in the dark-grown cells, but during the greening phase a threefol…

Photosystem IIChlorophyll cLight-harvesting complexes of green plantsPlant ScienceBiologyPhotosynthesisPhotochemistryPhotosystem Ichemistry.chemical_compoundGreeningchemistryChlorophyllGeneticsChlorophyll fluorescencePlanta
researchProduct

The Supramolecular Structure of Photosystem II — Phycobilisome‐Complexes of Porphyridium cruentum

1990

The structure and arrangement of phycobilisomes of the unicellular red alga Porphyridium cruentum is compared with the organization of the thylakoid freeze-fracture particles in order to determine the relationship between phycobilisomes and photosystem II. The hemi-ellipsoidal phycobilisomes, 20 nm thick, are predominantly organized into rows; their centre to centre periodicity is 30–40 nm, so that they are well separated by a gap of 10–20 nm. The phycobilisomes are cleaved by a central faint furrow, parallel to the long axis from top to base. The organization of the exoplasmic particles in rows is similar to the arrangement of the phycobilisomes so that a structural relationship between bo…

CyanobacteriabiologyPhotosystem IIPorphyridium cruentumThylakoidBotanyPorphyridiumBiophysicsPhycobilisomePlant Sciencebiology.organism_classificationPhotosynthesisPhotosystemBotanica Acta
researchProduct

Early folding events during light harvesting complex II assembly in vitro monitored by pulsed electron paramagnetic resonance

2016

Efficient energy transfer in the major light harvesting complex II (LHCII) of green plants is facilitated by the precise alignment of pigments due to the protein matrix they are bound to. Much is known about the import of the LHCII apoprotein into the chloroplast via the TOC/TIC system and its targeting to the thylakoid membrane but information is sparse about when and where the pigments are bound and how this is coordinated with protein folding. In vitro, the LHCII apoprotein spontaneously folds and binds its pigments if the detergent-solubilized protein is combined with a mixture of chlorophylls a and b and carotenoids. In the present work, we employed this approach to study apoprotein fo…

ChlorophyllModels Molecular0301 basic medicineProtein FoldingPigment bindingLight-Harvesting Protein ComplexesBiophysicsBiochemistrylaw.invention03 medical and health scienceslawElectron paramagnetic resonancePlant ProteinsPulsed EPRChemistryElectron Spin Resonance SpectroscopyPeasPhotosystem II Protein ComplexCell BiologyProtein tertiary structureProtein Structure TertiaryChloroplastFolding (chemistry)KineticsCrystallography030104 developmental biologyEnergy TransferThylakoidProtein foldingApoproteinsProtein BindingBiochimica et Biophysica Acta (BBA) - Bioenergetics
researchProduct

Thylakoid Membrane Maturation and PSII Activation Are Linked in Greening Synechocystis sp. PCC 6803 Cells

2013

Abstract Thylakoid membranes are typical and essential features of both chloroplasts and cyanobacteria. While they are crucial for phototrophic growth of cyanobacterial cells, biogenesis of thylakoid membranes is not well understood yet. Dark-grown Synechocystis sp. PCC 6803 cells contain only rudimentary thylakoid membranes but still a relatively high amount of phycobilisomes, inactive photosystem II and active photosystem I centers. After shifting dark-grown Synechocystis sp. PCC 6803 cells into the light, “greening” of Synechocystis sp. PCC 6803 cells, i.e. thylakoid membrane formation and recovery of photosynthetic electron transport reactions, was monitored. Complete restoration of a t…

Photosystem IIPhysiologyChemistryCytochrome b6f complexfood and beveragesLight-harvesting complexes of green plantsmacromolecular substancesPlant SciencePhotosystem IBiochemistryLight-dependent reactionsThylakoidQuantasomepolycyclic compoundsGeneticsBiophysicsPhotosystemPlant Physiology
researchProduct

TIP family aquaporins play role in chloroplast osmoregulation and photosynthesis

2020

SUMMARYPhotosynthetic oxygen evolution by photosystem II requires water supply into the chloroplast to reach the thylakoid lumen. A rapid water flow is also required into the chloroplast for optimal oxygen evolution and to overcome osmotic stress. The mechanisms governing water transport in chloroplasts are largely unexplored. Previous proteomics indicated the presence of three aquaporins from the tonoplast intrinsic protein (TIP) family, TIP1;1, TIP1;2 and TIP2;1, in chloroplast membranes of Arabidopsis thaliana. Here we revisited their location and studied their role in chloroplasts. Localization experiments indicated that TIP2;1 resides in the thylakoid, whereas TIP1;2 is present in both…

ChloroplastWater transportPhotosystem IIChemistryWater flowThylakoidBiophysicsfood and beveragesChloroplast ProteinsPhotosynthesisChloroplast membrane
researchProduct

Picosecond time-resolved study on the nature of high-energy-state quenching in isolated pea thylakoids different localization of zeaxanthin dependent…

1996

Abstract The influence of the transthylakoid proton gradient on the kinetics of picosecond fluorescence decay was examined using isolated pea thylakoids having high or low zeaxanthin contents. Fluorescence lifetime measurements were performed with open (Fo) and closed (Fm) PS II reaction centers. Zeaxanthin formation in membrane energized isolated thylakoids led to a marked decrease of the average fluorescence lifetime at both Fm and Fo. In contrast, when zeaxanthin synthesis was blocked by the inhibitor DTT, the fluorescence lifetime decrease was less pronounced in the Fm state and totally missing in the Fo state. Samples containing the uncoupler ammonium chloride did not exhinit any zeaxa…

Photosynthetic reaction centreRadiationQuenching (fluorescence)Radiological and Ultrasound TechnologyPhotosystem IIChemistryBiophysicsfood and beveragesPhotochemistryFluorescenceeye diseasesZeaxanthinchemistry.chemical_compoundReaction rate constantThylakoidRadiology Nuclear Medicine and imagingElectrochemical gradientJournal of Photochemistry and Photobiology B: Biology
researchProduct